Nonanticoagulant heparin inhibits NF-kappaB activation and attenuates myocardial reperfusion injury.

نویسندگان

  • V H Thourani
  • S S Brar
  • T P Kennedy
  • L R Thornton
  • J A Watts
  • R S Ronson
  • Z Q Zhao
  • A L Sturrock
  • J R Hoidal
  • J Vinten-Johansen
چکیده

Heparin reduces ischemia-reperfusion injury to myocardium. This effect has been attributed to complement inhibition, but heparin also has other activities that might diminish ischemia-reperfusion. To further probe these mechanisms, we compared heparin or an o-desulfated nonanticoagulant heparin with greatly reduced anticomplement activity. When given at the time of coronary artery reperfusion in a canine model of myocardial infarction, heparin or o-desulfated heparin equally reduced neutrophil adherence to ischemic-reperfused coronary artery endothelium, influx of neutrophils into ischemic-reperfused myocardium, myocardial necrosis, and release of creatine kinase into plasma. Heparin or o-desulfated heparin also prevented dysfunction of endothelial-dependent coronary relaxation following ischemic injury. In addition, heparin and o-desulfated heparin inhibited translocation of the transcription nuclear factor-kappaB (NF-kappaB) from the cytoplasm to the nucleus in human endothelial cells and decreased NF-kappaB DNA binding in human endothelium and ischemic-reperfused rat myocardium. Thus heparin and nonanticoagulant heparin decrease ischemia-reperfusion injury by disrupting multiple levels of the inflammatory cascade, including the novel observation that heparins inhibit activation of the proinflammatory transcription factor NF-kappaB.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonanticoagulant heparin inhibits NF-kB activation and attenuates myocardial reperfusion injury

VINOD H. THOURANI, SUKHDEV S. BRAR, THOMAS P. KENNEDY, LISA R. THORNTON, JOHN A. WATTS, RUSSELL S. RONSON, ZHI-QING ZHAO, ANNE L. STURROCK, JOHN R. HOIDAL, AND JAKOB VINTEN-JOHANSEN Departments of Internal Medicine and Emergency Medicine and the Cannon Research Center, Carolinas Medical Center, Charlotte, North Carolina 28232; Division of Cardiothoracic Surgery, Department of Surgery, Emory Uni...

متن کامل

Proteasome inhibition ablates activation of NF-kappa B in myocardial reperfusion and reduces reperfusion injury.

Both acute coronary occlusion and reperfusion of an infarct-related artery lead to significant myocardial cell death. Recent evidence has been presented that activation of the transcription factor nuclear factor-kappaB (NF-kappaB) plays a critical role in reperfusion injury. NF-kappaB is usually bound to its inhibitor, IkappaB, and classic activation of NF-kappaB occurs when the 20S proteasome ...

متن کامل

IKKbeta inhibition attenuates myocardial injury and dysfunction following acute ischemia-reperfusion injury.

Despite years of experimental and clinical research, myocardial ischemia-reperfusion (IR) remains an important cause of cardiac morbidity and mortality. The transcription factor nuclear factor-kappaB (NF-kappaB) has been implicated as a key mediator of reperfusion injury. Activation of NF-kappaB is dependent upon the phosphorylation of its inhibitor, IkappaBalpha, by the specific inhibitory kap...

متن کامل

Epigallocatechin, a green tea polyphenol, attenuates myocardial ischemia reperfusion injury in rats.

Epigallocatechin-3-gallate (EGCG) is the most prominent catechin in green tea. EGCG has been shown to modulate numerous molecular targets in the setting of inflammation and cancer. These molecular targets have also been demonstrated to be important participants in reperfusion injury, hence this study examines the effects of EGCG in myocardial reperfusion injury. Male Wistar rats were subjected ...

متن کامل

Tumor necrosis factor-alpha contributes to ischemia- and reperfusion-induced endothelial activation in isolated hearts.

-During myocardial reperfusion, polymorphonuclear neutrophil (PMN) adhesion involving the intercellular adhesion molecule-1 (ICAM-1) may lead to aggravation and prolongation of reperfusion injury. We studied the role of early tumor necrosis factor-alpha (TNF-alpha) cleavage and nuclear factor-kappaB (NF-kappaB) activation on ICAM-1 expression and venular adhesion of PMN in isolated hearts after...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 278 6  شماره 

صفحات  -

تاریخ انتشار 2000